Discovery of molecules with potential to treat breast cancer

January 01, 2016

The Hamilton researchers used state-of-the-art computational techniques in a novel way to design molecules that they predicted would be effective lead compounds for breast cancer research. Scientists from the Albany Medical College subsequently synthesized the predicted molecules and showed that they were indeed potential anti-breast cancer compounds in animal systems.

A paper detailing the research, "Computational Design and Experimental Discovery of an Anti-estrogenic Peptide Derived from Alpha-Fetoprotein," will be published in the May 16 issue of the Journal of American Chemical Society.

Winslow Professor of Chemistry George Shields and co-director of the Center for Molecular Design Karl Kirschner led the Hamilton research team with undergraduate students Katrina Lexa '05, Amanda Salisburg '08, Katherine Alser '09. The Albany team consisted of Leroy Joseph, Thomas Andersen, James Bennett, and Herbert Jacobsen of Albany Medical College.

Breast cancer is the most common cancer among women and tamoxifen is the preferred drug for estrogen receptor-positive breast cancer treatment. Many of these cancers are intrinsically resistant to tamoxifen or acquire resistance during treatment. Consequently, there is an ongoing need for breast cancer drugs that have different molecular targets.

Previous work by the Albany Medical College researchers had shown that 8-mer and cyclic 9-mer peptides inhibit breast cancer in mouse and rat models, interacting with an unsolved receptor, while peptides smaller than eight amino acids did not.

The Hamilton researchers used advanced computational methods to predict the structure and dynamics of active peptides, leading to discovery of smaller peptides with full biological activity. The results were used to identify smaller peptides with the three dimensional structure of the larger peptides. These peptides were synthesized and shown to inhibit estrogen-dependent cell growth in a mouse uterine growth assay, a test showing reliable correlation with human breast cancer inhibition.

hamilton

???We fit the ultrasound transducers with inertial sensors that can determine the exact position and orientation of the probe,??? explains Dr. Urs Schneider, project manager at the TEG. ???Specially developed algorithms then allow us to reconstruct a three-dimensional image from the data thus obtained.??? The inertial sensors are small, inexpensive semiconductor components that are sensitive to movement in any direction. Such sensors are normally very imprecise, especially when determining equatorial coordinates. However, the special algorithms developed by the TEG engineers enable the exact calculation of spatial coordinates. The margin of error of the sensors could therefore be reduced from around 10 degrees to less than one degree. For the first time, a highly accurate, low-cost navigation system is available that can easily be integrated into existing ultrasound scanners.

This inexpensive upgrade makes it possible to improve standards of healthcare, particularly in eastern European countries: Patients there too can now benefit from better diagnostic capabilities. Schneider expects the new system, which consists of a small device installed with the necessary software, to be commercially available later this year.

fraunhofer.de/